CAN-5-1-15 | |||
ホーム > 物理学正典 > 量子力学正典 > CAN-5-1-15 | |||
次のページ 前のページ 目次 |
|||
TEC-0-5-14 COM-5-15 COM-5-16 COM-5-17 COM-5-18 COM-5-19 COM-5-20 |
|||
▲このページの上端へ行く |
|||
補足説明をここに書く予定です |
|||
▲このページの上端へ行く | |||
【SEOテキスト】宇田雄一,06.2.12,§1-3.時間発展と描像,[4]IN描像とOUT描像,(0)前提条件,t>T1ort<T2⇒H1(t)=0(T1>T2),@基底と表示,(@)B(in)(t)≡{|e(in)(f;t)>|f∈I},B(out)(t)≡{|e(out)(f;t)>|f∈I},|e(in)(f;t)>≡U0(t,T2)|e(H)(f;T2)>=U0(t,T2)U(T2)|e(s)(f)>,|e(out)(f;t)>≡U0(t,T1)|e(H)(f;T1)>=U0(t,T1)U(T1)|e(s)(f)>,(A)|Ψ>≡∫dnfψ(in)(f;t)|e(in)(f;t)>≡∫dnfψ(out)(f;t)|e(out)(f;t)>,Ω|e(in)(f;t)>≡∫dngω(in)(g;f;t)|e(in)(g;t)>,Ω|e(out)(f;t)>≡∫dngω(out)(g;f;t)|e(out)(g;t)>,Aベクトルと演算子,|Ψin(t)>≡∫dnfψ(in)(f;t)|e(s)(f)>=[U0(t,T2)U(T2)]-1|Ψ>,|Ψout(t)>≡∫dnfψ(out)(f;t)|e(s)(f)>=[U0(t,T1)U(T1)]-1|Ψ>,Ωin(t)|e(s)(f)>≡∫dngω(in)(g;f;t)|e(s)(g)>,∴Ωin(t)=[U0(t,T2)U(T2)]-1ΩU0(t,T2)U(T2),Ωout(t)|e(s)(f)>≡∫dngω(out)(g;f;t)|e(s)(g)>,∴Ωout(t)=[U0(t,T1)U(T1)]-1ΩU0(t,T1)U(T1),B時間発展,(@)|Ψin(t)>≡|Ψs(t)in(t)>,Ωin(t)≡Ω(t)in(t),|Ψout(t)>≡|Ψs(t)out(t)>,Ωout(t)≡Ω(t)out(t),|Ψin(t)>=|ΨH>(t≦T2),|Ψout(t)>=|ΨH>(t≧T1),Ωin(t)=ΩH(t)(t≦T2),Ωout(t)=ΩH(t)(t≧T1) |
|||