Q-13 | ||||
Home > Q-13 | Sitemap | |||
Next Page Previous Page Home |
||||
Top of This Page | ||||
Top of This Page | wwwDGrammaticalPhysicsDac | Siteowner | |||
ySEOtextz0. General Formulation, (ii) Real Vector Field and Poincare Group, a. L(x;y)=-(1/4)(yʃ-y˃)(yʃ-y˃)-V(xx), xR4, yR4~4, I()=d4xL(*(x);**(x)), ӁR4(R4), b. I()/Ӄ(x)=0́L/݃Ӄ(x)-/xˁL/[݃˃Ӄ(x)]=0́݃ˁ݃˃Ӄ(x)-݃ʁ݃˃Ӄ(x)-V'(Ӄ(x)Ӄ(x))Ӄ(x)=0, c. Symmetry, 1. Lorentz Group, a. Definition and Fundamental Properties, L={|R4~4, gʃ˃ʃσ˃=gσ}, 1. ̓R4~4;gσЃʃσ˃=gʃˁ(-1)ʃ=gʃg˃ЃЃρ̃L, 2. ̓R4~4;[xR4;gʃ(ʃx)(˃x)=gσxx]̃L, 3. ̓L; det =}1, 4. ̓L; |00|1 and (|00|=1̃j0=0̃0j=0), 5. L+={|det=+1,00+1,L}, L+={|det=+1,00-1,L}, L-={|det=-1,00+1,L}, L-={|det=-1,00-1,L}, Notice that L+,L+=L+L+,L=L+L- and L+L- are subgroups of L. b. Parametrization and Generators, ̓L+, ƁR[4~4];=exp[-(i/2)ƃʃMʃ] where: (Mʃ)σ=i(gσg˃-gσgʃ), {[Mʃ,Mσ]=i(g˃Mʃ-gʃM˃-g˃Mʃ+gʃM˃) |
||||
(C) Yuuichi Uda. All rights reserved. |